Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies
نویسندگان
چکیده
منابع مشابه
A Comparison of Hierarchical and Non-Hierarchical Bayesian Approaches for Fitting Allometric Larch (Larix.spp.) Biomass Equations
Accurate biomass estimations are important for assessing and monitoring forest carbon storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical Bayesian approach has received increasing attention for improving biomass models. In this study, tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from larch plantations in six ...
متن کاملBayesian model selection for group studies
Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) me...
متن کاملBayesian model selection for group studies - Revisited
In this paper, we revisit the problem of Bayesian model selection (BMS) at the group level. We originally addressed this issue in Stephan et al. (2009), where models are treated as random effects that could differ between subjects, with an unknown population distribution. Here, we extend this work, by (i) introducing the Bayesian omnibus risk (BOR) as a measure of the statistical risk incurred ...
متن کاملBayesian model selection maps for group studies
This technical note describes the construction of posterior probability maps (PPMs) for Bayesian model selection (BMS) at the group level. This technique allows neuroimagers to make inferences about regionally specific effects using imaging data from a group of subjects. These effects are characterised using Bayesian model comparisons that are analogous to the F-tests used in statistical parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2019
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1007043